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ABSTRACT 

The  conditions for uniqueness of solutions to the barotropic vorticity equation  within  a  limited  region are 
discussed, in particular for cases  with flow  through the boundary,  when no physical boundary conditions exist. 
Two different sets of boundary  conditions  are given, for  which the solution will remain  uniquely  defined  as  long as 
certain of its derivatives are  bounded. A small  perturbation on the initial  solution  will  then also remain  small,  and 
the problem is thus properly  posed. It is furthermore shown that similar  conclusions  may  be drawn for the finite- 
difference vorticity equation of the “leapfrog” type, based  on the symmetric-conservative  Jacobian  suggested  by 
Arakawa  and the normal five- or nine-point  Laplacian, if  in addition two stability conditions are satisfied, one of them 
being  essentially the condition  suggested by Charney, Fjortoft, and von Neumann. 

1. INTRODUCTION 
The motions of large-scale disturbances in a rotating 

fluid may often be derived from the  barotropic  vorticity 
equation for a barotropic fluid 

a - vV=-J(IhvV+f)+F+D(lb) at (1) 

where v2 and J are two-dimensional Laplace and  Jacobi 
operators, F is a prescribed forcing function, D($) a 
dissipation term, usually of the  type -@$ (bottom- 
friction case) or vv4$ (diffusion case), $ is the stream 
function for the flow, andf  the Coriolis parameter. 

If the region of interest is a bounded basin, which may 
be plane or part of the surface of a sphere, the  non-idow 
boundary condition a$/&=O may be achieved by pre- 
scribing $=0 at  the boundary. If the diffusion type of 
dissipation is used, we also have  the nonslip condition 
l i + / i h = O  at  the boundary. In other cases, the solution is 
however  assumed to exist a t  all points on the surface of a 
sphere, altliough we are only interested in its behavior 
within a restricted region. No physical arguments  can 
then be used to derive a necessary set of boundary 
conditions. In their classical paper, Charney,  Fjortoft,  and 
von Neumann (1950) concluded that $ must be known 
at  the whole boundary and vs+ at the inflow part of the 
boundary (where a$/ds>O), only on the basis of heuristic 
arguments. 

In section 2 of this paper it will, however, be shown 
that a solution satisfying the Charney-Fjortoft-von Neu- 
mann  boundary conditions is actually uniquely deter- 
mined, but  that this is also the case if a $ / h  instead of v2# 
is known at  M o w  points. The solution is then a continuous 
function of the initial data and the problem consequently 
properly posed. The proof is based on a stability function, 

giving an upper bound for the growth of perturbations on 
the correct solution to the equation. (For the basic ideas 
of this “energy method,” see Richtmyer  and Morton, 1967.) 
Only the plane case will be shown. 

9. A STABILITY  FUNCTION  FOR  THE  BAROTROPIC 
VORTICITY  EQUATION 

Let $=$O(z,y,t) satisfy (I), certain  yet unspecsed 
boundary conditions on the boundary  curve 6‘ of the 
plane region R, and  the initial condition $(z,y,O)= 
$O(z,y,O). With slightly perturbed  initial  and boundary 
values, the solution would be $O(s,y,t)  +$’(z,y,I), the 
disturbance $‘ satisfying the equation 

5 v~’=--J($’ ,r lo) -J(~o+$’ ,V~‘)+~Ut‘)  (2) 
a 

where qo=Vz$o+t. 

A suitable measure of the  intensity of the disturbance 
is its root-mean-square vorticity or root-mean-square 
velocity.  Using the  inner  product symbols 

the symmetry  property of the Jacobian 

and  the  integral relations 
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we get  the following equations for the growth rates of 3) The  third  type of upper bound is a modification 
these norms. For the RMS vorticity, of type 1). It uses the  fact that for some X,,, 

and for the RMS velocity 
With the first type of estimate, we obtain from (6), (7), 

and (8) 

a#’ where 
-[$“, D($”)l=l+.#’ bn ds-KlIV#’I12. 

We must now derive upper bounds for the inner prod- 
ucts [V29‘,J(qo,#‘)] and [Vz#’,J($o,,S’)]. This can  be done 
in  three ways. 

1) From  the definition of the Jacobian  and the well- 

1 a w 
+ , v 2  -& 9’VV b (9O+9’)+4’ ds, 

known inequality 2zy <-xz+ay2 (a is an  arbitrary positive or if 1 
-a 

number) follows that  an inner  product of the  type 
17,J(aJ@)] satisfies the relation K,= m m  ( r n m / ~ v ~ l ) ~ ’ ~ ?  K2= mm (mg~]V9~l)’”,  

Olt lT  R Olt lT  

and  the  latter integra1 is less than a (a) I[Vj3112 where a (a) is the  total deformation for the field a. 
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and the third type (11)  combines with (6) into 

where 

Upper bounds for the norms are now easy to give if the 
boundary conditions make the integrals E I l + K &  Ia, 
or Il nonpositive. One such set of boundary conditions 
is $'=O; v2$'=0 when a$o - >O, making Iz=O, Il 50. Equa- 
tion (14) then gives 

as - 

E l  IVW I I " E I  IVV I l 2  
<(%lIvv112+K;"llv#')(2) exp@(K&--K)t) (17) 

t =o 

or simply, using (lo), 

I I V V I I ~ < ( ~ + ~ ~ ~ ~ = ) I I V ~ ~ I I ~  K: 2 1 - 0  - e x p ( 2 ( ~ 1 ~ 2 - - ) ~ .  (18) 

Alternatively, (16) gives 

IIVV112<11VzVI12 *exp(2(K,-K)t). ( 19) 
I - 0  

This is not  the only useful set of boundiry conditions. If 

+'=O at  the whole boundary and - =O when - 20, 

Ia=O and I B < O  so that 

a+" a*o 
h as 

~~v$'~~z<~/v#'~~2 eq(a(Ka--K)t). (20) 

From these inequalities two important conclusions may 
be drawn: 

a) If the initial  perturbation #'(s,y,O)=O and the 
first type of boundary condition is used, we obtain 
JJV2#'112=0 for all t>O, as long as Kl Kz or K, is bounded. 
Since $'=O at the  boundary, this implies that  the dis- 
turbance itself remains identically equal to zero, and it is 
thus impossible to  obtain more than one solution to  the 
equation from given initial data. With the second type of 
boundary condition, we obtain  the same result concerning 
the uniqueness of the solution if Ka is bounded, since 
$'(z,y,O) =O then implies llv$'((2=0 and  thus #'=O for all 
t>o. 

b) Any one of these inequalities gives an upper bound 
for the growth rate of a certain norm of #' which is only a 
function of the undisturbed solution. This guarantees that 
the problem is properly posed and that  it is meaningful 
to search for a solution by a finitedifference technique. 

1-0  

' I- 

3. A STABILITY  THEOREM  FOR  THE  FINITE-DIFFERENCE 
BAROTROPIC  VORTICITY  EQUATION 

The numerical method suggested by Charney et al. 
(1950) for the integration of the plane, frictionless version 

of  (1) was the  central-Merence "leapfrog"  scheme 

TJP ip+l- 
(6) 1, j %qt,;1=-2AtJ(6) (qk, %lP+f), j (21) 

with the finite-difference Laplace  and  Jacobi operators 
chosen as 

1 V6)%.PKZ ( Q f + l , j + ~ t - l . , + ~ f . j + l + ~ f , , - l - 4 ~ ~ , j )  (22) 

and 

1 
JG)(a, B)f.j'&g ( ( (Y ,+l , j - (Yf - l . , ) (Bf , ,+ l -Bf . , - l )  

-(~,.j+l--al,,-l)(af+1,j-Br-1.j))=J++(-a, B)r.r. (23) 

From a linearized disturbance equation with locally 
constant coefficients, they concluded that  the solution 
should be  stable for all At less than a certain Atmfn(As). 
As shown by Phillips (1959), this conclusion is not valid 
for finite distufbances. Due  to  the limited accuracy of the 
initial data and other errors, an unlimited error growth 
may  thus  set in after a snite integration time. By changing 
the fhite-difference Jacobian to  the symmetric conserva- 
tive form 

JC(% a ~ f . , ~ 5 ~ ~ o , z ~ ~ 0 , u B ~ " D o , y ~ ~ O . * S ~ + ~ O , u ~ B ~ O , Z ( Y ~  

- ~ o , z ( P ~ o . u c u ) + ~ o . z o L  ~ ~ o , u B - ~ o . u c u ~ ~ o , z B ~ f , ~  

= 9 { J + " ( ( Y , B ) f , j + J x + ( - a ,  a>f.,+J++(-a, a>&,} 
(24) 

where Do,z and Do, ,, are centralaerence operators defined 
by 

1 1 
Do,Z(Yf,j=G ( - a f + I ,  j--a1-1, j ) ,  Do.ucuw'z;il; (.i.,+l -af.,-l).  

(25) 

Arakawa (1966) constructed a scheme  where the errors 
could not grow without limit, although it was not shown 
whether or when they would remain small compared to 
the exact solution. The question of stability conditions 
was not discussed. 

A detailed investigation of the computational  sta- 
bility of the finite-difference barotropic vorticity equation 

- ( ~ ~ ~ ~ - ~ z ~ : , ~ l ) = - J ( q k ,  m?+f)i , ,+q,,  
1 

2At 

+D(f (P:3'+%')) (26) 

will here be presented for the case when R is a rectangular 
region,  assuming the Jacobian to be of the symmetric- 
conservative form (24) introduced by Arakawa. A similar 
result  may be derived for a region  covered by a rhombic 
(hexagonal)-rectagonal grid with the Jacobian suggested 
by  Sadourny et al. (1968). The idea of the proof is similar 
to the one leading to the estimate (19). 
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Consider for simplicity only the case D($) = - d 2 $  and 
let R be a rectangle with sides LAs and MAS. P is thus 
defined  on thegrid (q, y,, t,), O S i l L ,  Olj lM,  O l k l N  
= T/At where the  sets of points with i=O or L and with 

j = O  or Mare  the boundary points. At  the  boundary,  both 
f and vZX& will be assumed to be known, although (19) did 
only require a knowledge of V2$ at the inflow part of the 
boundary.  This assumption is made  partly because of its 
common  use, partly because of the resulting simplifica- 
tions. Some numerical boundary condition must be used 
at  the outflow part of the  boundary, but  the choice of this 
additional condition should not influence the  stability  and 
accuracy very much. (See note added in proof on page 345.) 

A suitable inner product for scalars is simply 

The definition of an  inner  product corresponding to 
[Va, VP] depends on the  type of Laplace operator being 
used. Since we are  not considering schemes  using special 
formulae for points near  the  boundary, all operators 
must be of the simplest nine-point type. The Laplacian 
could then be either the five-point operator v ~ ( ~ ,  given by 
(22), the nine-point operator v ~ ( ~ )  defined by 

V?9)*i.,-6pQ2 ~*~+l,,+l+*f+l,*-l+**-l,,+l+*f"l,,-l 
1 

+ ~ ~ * ~ + l . , + ~ * - l , , + ~ f , , + l + ~ f , ~ - l ~ - - 2 ~ f i , ~ ~ ,  (28) 

or a combination of these. The inner product [ ~ a ,  v@] 
should satisfy  the relation 

if. a=O at  the boundary. By partial summation, it is 
easily  shown that this is true for 

[ V G , % V G ) P I G E  C A S 2 ( ~ + z ~ t . , ' D + z 8 ~ . , + ~ + y ~ i , ~ . D + Y P ~ . j )  
L-1 "I 

t = O  j = o  

(30) 
and for 

where D+ and D- denote  the forward and backward 
difference operators in the x, y, and the two diagonal 
( E ,  7 )  directions, e.g., 

1 
-*i. I )  ; D+k**,  sJ=- (91-1 ,,+1--9*,,). 

We want the Jacobian to satisfy relations similar to  

(3) and (5); the only possible form is thenhaka wa's 
J1(9,(a,/3). The relation 

JtQ) (a, P )  = " C Q )  (6, 4 (32) 

follows by inspection, and summation by  parts gives 

[Y, 4 9 )  (a, P)l=-[P, Jg:Q)(% 711 (33) 

provided P=y=O at the boundary. 

The perturbation equation is  now 

( l f ~ A . t ) ~ X & ' ~ ~ ~ - ( l - ~ ~ ) ~ ~ ' ~ * - ~  

="2At(J(P'k, T@)+ J(*@+Wk, V W k ) )  (34) 

where ~~=V?l!~+f and the indices i, j have been dropped. 
Introduce now the magnified disturbance function 

satisfying the simpler equation 

v2(p'k+1"V2p'k-l=- 2A't($("'', T @ ) + J ( " @ + ~ ' ~ ,  V2&) 

(35) 

and 

w2=[v2(0'k, .J(!l?-l+\k'k-l, Vp'"")] 

+[V2$7'k-1, J ( @ + V k ,  Vp'"]. 
Then, 

L k = L 1 - 2 A ' ~ ~ ( ~ 1 + ~ z ) ~ L 1 f 2 A ' t ~ ( I M Y l I f I ~ z ( ) .  
k-1 

v = l  "=l 

(38) 

As above, we need upper bounds for inner products of 

In the appendix is shown that 
the type [Y, J (a, PI]. 
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_<Cz Jz - L,, max G(qo’) (45) 
O<&N 

where Cz does not depend upon the choice of At and As, 
we have 

“+’ A’t&,, . max G(qou)) -. (46) 
k-I Ll 

V Ql 

From this inequality and the upper bound for L’, 

~ 1 1 ~ ~ - - l ~ ~ I I ~ ~ ~ ” 1 1 ~ + l l ~ ~ ~ ’ o 1 1 2 ~ ,  (47) 
we finally obtain, in terms of the original variable W ,  

For all klN=T/At ,  this gives a bound for the n o m  of 
V%” in terms of the corresponding norms of the initial 
disturbances V W 1  and TWO. This proves the stability 
of the leapfrog scheme with the symmetric conservative 
Jacobian as long as (44) and (45) are satisfied. 

Of the  stability conditions (44) and (45), the first om 
is essentially the same as Charney-Fjortoft-von Neu- 
mann’s heuristic stability condition. Since they are written 
in terms of the disturbed stream function and the un- 
disturbed vorticity fields, they  have an u posteriori 
character. If they are satisfied for small perturbations, 
stability prevails also for finite disturbances as long as 

1) muxG(qO‘)<<~~~zAs~lmaa:G(\kov+~’P) 

2) mazG(qo’) = muxG(qoy+q’”), 

V V 

or 

V V 

but since the exact solution is unknown, it is recommended 
to choose At safely below the upper bound set  by  the 
stability conditions determined from an approximate 
solution. 

4. CONCLUSIONS 
It has been shown that  the problem of integrating the 

barotropic vorticity equation within a  restricted region 
is actually properly posed if boundary conditions of the 
Charney-Fjortoft-von Neumann  type  are used, but  that 
is also true for a different set of conditions. The solution 
will be unique as long as certain derivatives of it remain 
bounded, and  a small error in the  initial data cannot 
grow with an unlimited speed. The same is true for the 
finite-difference form of the equation, based on the 
symmetric conservative Jacobian, a t  least if the region is 
rectangular and  both 3 and ViP are known at the bound- 
ary. Letting At and As approach zero in a way that keeps 
the  stability conditions satisfied, it is  also  possible to 
show that the solution actually converges to  the exact 
solution of the barotropic vorticity equation. These 
conclusions remain valid as long as certain derivatives 
of the solution remain bounded. It is, however, not 
possible to  say in advance whether they will be true for 
all t 1 0, which is an effect of the nonlinearity of the 
equation, but  it is in most cases likely that  the presence 
of a dissipation term should prevent the occurrence of 
unlimited values for these derivatives. 

5. APPENDIX 
DERIVATION OF UPPER BOUNDS 

T o  derive upper bounds for [ T , J ~ ( ~ )  (a,S)] when V2(5) is 
used, we may write the symmetric conservative Jacobian 
as 

J“(g,(a, B~i.,=YBI~+z~t.,~O,lal+l.,+~+z(Y1_1.1DO,yPI-1.1 

--D+,~,,,Do,zBt.,+1-~+l~f,,-l~O.zS*,,-l+~+I~f.,~o,z~f,~+1 

+ D + , a , , f - l ~ o , z Q f , , - l - ~ + z B i , r ~ o , l ~ i + l , , - ~ + z P f - 1 , ~ ~ o . ~ ~ - ~ ~ ~  

+ ~ D o . z ~ f . , D o , y P r . , - ~ ~ o , v ~ f , , ~ o . Z s f . , ~  (49) 
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